Hybrid generative-discriminative training of Gaussian mixture models
نویسندگان
چکیده
منابع مشابه
Hybrid Discriminative-Generative Approach with Gaussian Processes
Machine learning practitioners are often faced with a choice between a discriminative and a generative approach to modelling. Here, we present a model based on a hybrid approach that breaks down some of the barriers between the discriminative and generative points of view, allowing continuous dimensionality reduction of hybrid discretecontinuous data, discriminative classification with missing ...
متن کاملA discriminative training algorithm for Gaussian mixture speaker models
The Gaussian mixture speaker model (GMM) is usually trained with the expectation-maximization (EM) algorithm to maximize the likelihood (ML) of observation data from an individual class. The GMM trained based the ML criterion has weak discriminative power when used as a classifier. In this paper, a discriminative training procedure is proposed to fine-tune the parameters in the GMMs. The goal o...
متن کاملClassification with Hybrid Generative/Discriminative Models
Although discriminatively-trained classifiers are usually more accurate when labeled training data is abundant, previous work has shown that when training data is limited, generative classifiers can out-perform them. This paper describes a hybrid model in which a high-dimensional subset of the parameters are trained to maximize generative likelihood, and another, small, subset of parameters are...
متن کاملDiscriminative mixture weight estimation for large Gaussian mixture models
This paper describes a new approach to acoustic mod-eling for large vocabulary continuous speech recognition (LVCSR) systems. Each phone is modeled with a large Gaussian mixture model (GMM) whose context-dependent mixture weights are estimated with a sentence-level discrim-inative training criterion. The estimation problem is casted in a neural network framework, which enables the incorporation...
متن کاملDiscriminative Training of Subspace Gaussian Mixture Model for Pattern Classification
The Gaussian mixture model (GMM) has been widely used in pattern recognition problems for clustering and probability density estimation. For pattern classification, however, the GMM has to consider two issues: model structure in high-dimensional space and discriminative training for optimizing the decision boundary. In this paper, we propose a classification method using subspace GMM density mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2018
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2018.06.014